Gallons Per Hour
Brand Name
Type
Spray Angle
Spray Patten
Vial color
|◀ 697 - 708 of 884 ▶|
View:
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.75-80A

Item#:
2.75-80A
Manufacturer Item:
00275-80A7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.50-60W

Item#:
2.50-60W
Manufacturer Item:
00250-60W7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Monarch 2.00-60AR

Item#:
2.00-60AR
Manufacturer Item:
2.00-60AR
Manufacturer:
MONARCH NOZZLES
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Danfoss 2.75-60B-HAGO

Item#:
2.75-60B-HAGO
Manufacturer Item:
030G6438
Manufacturer:
DANFOSS LLC
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.50-60B

Item#:
2.50-60B
Manufacturer Item:
00250-60B7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.00-70B

Item#:
2.00-70B
Manufacturer Item:
00200-70B1
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.50-45A

Item#:
2.50-45A
Manufacturer Item:
00250-45A7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.50-80A

Item#:
2.50-80A
Manufacturer Item:
00250-80A7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.50-70B

Item#:
2.50-70B
Manufacturer Item:
00250-70B7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Monarch 2.00-45B-HAGO

Item#:
2.00-45B-HAGO
Manufacturer Item:
030G6332
Manufacturer:
DANFOSS LLC
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Delavan 2.25-45A

Item#:
2.25-45A
Manufacturer Item:
00225-45A7
Manufacturer:
DELAVAN SPRAY TECH
Flow Rate
  • Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency
Spray Angle
  • Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers. Usually it is desirable to fit the spray angle to the air pattern of the burner. In todays flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.
Burner Air Patterns
  • Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer

Monarch 2.75-80PLP

Item#:
2.75-80PLP
Manufacturer Item:
2.75-80PLP
Manufacturer:
MONARCH DIVISION
|◀ 697 - 708 of 884 ▶|
View: